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The hyperoctahedral wreath product group P4[P2] of order 384 spans the 
symmetries of the chemically important eight coordinate polyhedra (cube, 
hexagonal bipyramid, Dzd dodecahedron, and square antiprism) as well as the 
fully symmetric group P8 of order 8! = 40320. This restriction by a factor of 
105 makes the treatment of permutational isomerizations of eight-coordinate 
polyhedra tractable for the first time. In connection with such a treatment this 
paper describes the isomers of those four eight-coordinate polyhedra which 
can be obtained by restricting the permutations of the vertex labels to the 
P4[P2] group. A topological representation of the interconversions between 
enantiomeric pairs of these hyperoctahedrally restricted isomers of the eight- 
coordinate polyhedra consists of a K4.4 bipartite graph with hexagons at its 
eight vertices. The eight vertices of the K4,4 graph correspond to cubes, the 
total of 48 vertices on the eight hexagons correspond to the square antiprisms, 
the 48 edges of the hexagons correspond to the D2a dodecahedra, and the 16 
edges of the original K4,4 graph correspond to the hexagonal bipyramids. The 
lowest energy process interconverting eight coordinate polyhedra consists of 
paths around the circumference of a given hexagon corresponding to inter- 
conversions between Dza dodecahedra and square antiprisms which do not 
require the cube or hexagonal bipyramid as intermediates. The following two 
additional features of the hyperoctahedral restrictions on the vertex permu- 
tations of the eight coordinate polyhedra are of some significance: (1) The 
hyperoctahedral restriction removes processes in D2a dodecahedra and 
square antiprisms involving enantiomer interconversion thereby suggesting 
that such processes have higher energies and leading to the prediction of 
optically stable fluxional eight-coordinate complexes; (2) Since P4[P23 is a 
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soluble group in contrast to Ps which is not soluble, the hyperoctahedrally 
restricted permutations between the isomers of the individual polyhedra have 
a natural group structure which disappears when the hyperoctahedral restric- 
tions are removed. 

Key words: Polyhedral rearrangements-Eight-coordinate complexes- 
Topological representations- Permutation group theory-  Hyperoctahedral 
wreath product groups - Permutational isomerizations. 

I. Introduction 

During the past fifteen years the chemistry and spectroscopy of stereochemically 
non-rigid [2-4] or fluxional [5] molecules has received considerable attention. Of 
particular interest are polyhedral rearrangements [6, 7] in coordination 
complexes of the type MLn (M = central atom, most frequently a metal; L = 
ligands). The cases of five [8-17] and six [18-24] coordinate polyhedra have 
received extensive consideration. Topological representations [6, 7] of polyhedral 
rearrangements have been developed for these systems. Thus rearrangements in 
five-coordinate polyhedra with non-chelating ligands can be represented as a 
double group pentagonal dodecahedron [6], Petersen's graph, [15, 25] or the 
Desargues-Levi graph [10, 26]. Similarly, rearrangements in six-coordinate 
complexes can be represented as a pentagonal dodecahedron [18], the Desar- 
gues-Levi graph [26, 27] or a seven-dimensional analogue of the tetrahedron (Ks 
graph) [22]. 

Considerably less progress has been made in the development of topological 
representations for rearrangements in polyhedra with more than six vertices. The 
difficulty in the treatment of such systems has been their large isomer counts [6] 
which range from 504 to 10 080 for the commonly encountered seven- and eight 
vertex polyhedra. This paper presents a new approach for the analysis of poly- 
hedral rearrangements in eight vertex polyhedra. This approach selects from the 
unmanageable number of eight-vertex polyhedral permutational isomers a well- 
defined manageable subset (the hyperoctahedrally restricted subset) of these 
isomers. This subset is topologically closed [6] with respect to internal iso- 
merizations which appear sufficient to represent interconversions of eight-coor- 
dinate polyhedra other than interconversion of enantiomers. 

2. Some Relevant Concepts in Graph Theory and Group Theory 

Since topological representations [6, 7] are graphs, some relevant concepts in 
graph theory [28] will first be reviewed in order to provide a foundation for the 
understanding of some of the specific points discussed in this paper. A graph is 
defined [28] as a finite non-empty set V together with a (possibly empty) set E 
(disjoint from V) of two-element subsets of (distinct) elements of V. Each element 
of V is called a vertex and V itself is called the vertex set of G. The members of the 
edge set E are called edges. The edge e = {u, v} is said to join the vertices u and v. 
If e = {u, v} is the edge of a given graph, then u and v are called adjacent vertices. 
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A polyhedron is simply a graph that is realizable in three-dimensional Euclidean 
space. (More precisely a graph is a 1-skeleton [29] of a polyhedron.) A topological 
representation is a graph representing permutational isomerizations [30] in which 
the vertices represent different permutational isomers and the edges represent 
processes of a specified type for isomer interconversion. 

Group theory [31, 32] is useful for analyzing the symmetry properties of graphs in 
a way completely analogous to the use of point groups [28] for analyzing the 
symmetry of three-dimensional polyhedra. Thus the automorphism group [29, 30] 
of a graph is the group of permutations of its vertices which preserves the 
adjacency relationships of the vertices. The automorphism groups of graphs 
correspond to the point groups of three-dimensional polyhedra. The concepts of a 
graph and its automorphism group are thus generalizations of the concepts of a 
polyhedron and its point group where the requirement of realizability in three- 
dimensional space is removed. A graph realizable as the 1-skeleton of a three- 
dimensional polyhedron can be drawn on a piece of paper without any crosging 
edges. Such a graph is called a planar graph [28], other graphs are non-planar 
graphs. 

A fundamental theorem in graph theory [33] states that any permutation group 
can be the automorphism group of some graph although not necessarily a graph 
with as few vertices as the number of objects interchanged by the permutation 
group. In any case a permutation group of interest can be depicted as the 
minimum vertex graph having the permutation group as its automorphism group. 

The largest group permuting n objects is the fully symmetric group represented 
here as Pn (for consistency with a previous paper [34] of this series where the more 
conventional designation [32] S~ is inconvenient because of the possibility for 
confusion with improper rotations [31] also designated Sn). The group Pn contans 
n! elements representing all possible permutations of n objects. The minimum 
vertex graph Gmin(Pn) of which Pn is the automorphism group is the complete 
graph [28, 35] K,  which consists of n vertices with an edge connecting every 
possible pair of vertices. The graph K, thus has n (n - 1 ) / 2  edges. 

The isomer count I of a polyhedron with n vertices is n !/JR ] where IRI is the order 
of the rotational subgroup of the point group of the polyhedron [-6, 7]. This counts 
the number of distinguishable permutational isomers [7, 30] of the polyhedron in 
question. For the eight-coordinate polyhedra n !=  40 320, which means that the 
cube, hexagonal bipyramid, square antiprism, and D2d dodecahedron have 
isomer counts of 40320/24= 1680, 40320/12=3360,  40320/8=5040,  and 
40320/4=10080, respectively. A graph corresponding to a topological 
representation of permutational isomerizations involving such large numbers of 
polyhedral isomers is clearly unwieldy and unmanageable. 

The problem of representing permutational isomerizations [7, 30] in eight- 
coordinate polyhedra can be simplified if a subgroup of Ps is found which contains 
the symmetries of all of the polyhedra of interest. A previous paper of this series 
[34] shows that the wreath product group [36-40] P4[P2] of order 384 contains all 
of the symmetries of the cube, hexagonal bipyramid, square antiprism, and D2d 
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dodecahedron which are all of the eight-coordinate polyhedra [41] of interest. If 
the group P4[P2] rather than P8 is used to calculate restricted isomer counts 
2J=384/IR[, the more manageable isomer counts of 16, 32, 48, and 96 are 
obtained for the cube, hexagonal bipyramid, square antiprism, and Dzd dodeca- 
hedron, respectively. These 2J isomer counts are now small enough that topolo- 
gical representations of the interconversions of these isomers are feasible. 

The concept of restricting permutations of ligands in eight-coordinate ML8 
complexes to those in the wreath product group P4[P2] rather than in the fully 
symmetric P8 group can be restated in graph theoretical terms using the hyperoc- 
tahedral graph [35] H4. Therefore such a restriction of permutations from P8 to 
P4[P2] will be called a hyperoctahedral restriction. The hyperoctahedral graphs 
underlying this restriction are designated as Hn and have 2n vertices with every 
vertex connected to all except one of the remaining vertices so that each vertex of 
Hn is of degree 2(n - 1). (The name "hyperoctahedral" comes from the fact that 
an Hn graph is the 1-skeleton of the analogue of the octahedron (the "cross- 
polytope") in n-dimensional space [26].) Thus Hz and /-/3 correspond to the 
square and the octahedron, respectively. The automorphism group of Hn is the 
corresponding wreath product group P~[P2] of order 2"(n !). Thus the P4[P2] 
wreath product group of interest in this paper is the automorphism group of / /4  
which is the 1-skeleton of the four-dimensional analogue of the octahedron (the 
"cross-polytope" 3'4) [29]. This hyperoctahedral graph H4 has 8 vertices, 24 
edges, and each vertex is of degree 6 (i.e. connected to 6 edges). There are 
therefore only four unconnected pairs of vertices in H4. The standard labelling of 
H4 can be defined without loss of generality to give the four unconnected vertex 
pairs the number pairs 1 and 2, 3 and 4, 5 and 6, and 7 and 8. These pairs of 
unconnected vertices in the standard labelling of the H4 hyperoctahedral graph 
are conveniently called trans complements by analogy with the standard desig- 
nation of trans positions in octahedra. 

These graph theoretical concepts can be related to the isomer counts defined 
above through the concept of graph coverings. Such graph coverings consider only 
pairs of connected graphs having equal numbers of vertices. Label such a pair of 
connected graphs as G1 and G2 so that G1 has at least as many edges as G;. An 
admissible covering of GI by G2 involves superimposing the vertices of GI and G2 
so that each edge of G2 falls on an edge of GI. Two admissible coverings Ca and C2 
of G1 by G2 may be considered distinguishable if Ca covers different edges of G1 
than 672. Thus if G1 and G2 have the same numbers of edges as well as the same 
numbers of vertices the number of admissible coverings of G1 by G2 must be 
either 1 or 0. For example, the number of distinguishable admissible coverings of 
GI by G2 where G2 is a polygon (with the same number of vertices as G1) 
corresponds to the number of distinguishable Hamiltonian circuits [28] in G> 

The various isomer counts can now be expressed in terms of graph coverings. Thus 
the conventionally defined isomer count I--n!/[R[ (i.e. relative to the fully 
symmetric permutation group P,) for a polyhedron with n verti6es corresponds to 
the number of distinguishable admissible coverings of the 1-skeleton of the 
polyhedron on the complete graph K~. Analogously, the hyperoctahedrally 
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restricted isomer count for eight-vertex polyhedra 2J = 384/IR I (i.e. relative to 
Pa[P2] rather than Ps) corresponds to the number of distinguishable admissible 
coverings of the 1-skeleton of the polyhedron on the hyperoctahedral graph/-/4. 
The isomers of an eight vertex polyhedron counted by 2J and represented by such 
distinguishable admissible coverings of/-/4 are called hyperoctahedrally restricted 
permutational isomers. If the underlying hyperoctahedral graph/-/4 is given the 
standard labeling as defined above, hyperoctahedrally restricted permutational 
isomers of eight vertex polyhedra cannot have edges between the four pairs of 
trans complements, i.e. vertices 1 and 2, vertices 3 and 4, vertices 5 and 6, vertices 
7 and 8. This is the essential feature that is used to select the hyperoctahedrally 
restricted permutational isomers of the eight vertex octahedra from all possible 
permutational isomers of the eight vertex octahedra (i.e. those representable as 
distinguishable admissible coverings of Ks). 

The following features of the hyperoctahedrally restricted permutational isomers 
are also of interest: 
(1) Eight vertex polyhedra will always have fewer edges than the hyperoctahedral 
graph Ha. Thus whereas/-/4 has 24 edges, the maximum number of edges possible 
for an eight vertex polyhedron [42] is 18 corresponding to an eight vertex 
polyhedron containing only triangular faces (e.g. the hexagonal bipyramid or the 
dodecahedron). Thus in a hyperoctahedrally restricted permutational isomer of 
an eight-vertex polyhedron, there will be other pairs of vertices besides the trans 
complements which are unconnected by edges. In effect, the different ways of 
choosing these additional unconnected vertices which are not trans complements 
lead to the multiplicity of hyperoctahedrally restricted permutational isomers for 
a given polyhedron. 
(2) If an eight vertex polyhedron has 2J  hyperoctahedrally restricted permu- 
tational isomers, these isomers can be represented as J pairs of enantiomers 
conveniently called hyperoctahedrally restricted enantiomeric pairs. Thus the cube, 
hexagonal bipyramid, square antiprism, and D2d dodecahedron have 8, 16, 24, 
and 48 hyperoctahedrally restricted enantiomeric pairs, respectively. 
This paper describes the hyperoctahedrally restricted enantiomeric pairs of the 
four eight-vertex polyhedra of interest in terms of their vertex labels relative to 
the standard labelling of the underlying/44 graph as defined above. Topological 
representations of permutation isomerization reactions between these hyperoc- 
tahedrally restricted enantiomeric pairs can then be presented for the first time. 

A valid question at this point is to what extent do permutational isomerization 
reactions between hyperoctahedrally restricted enantiomeric pairs of eight- 
coordinate polyhedra reflect permutational isomerizations that actually take 
place in real systems where there need not be hyperoctahedral restrictions. In 
other words, what price do we pay for simplifying the eight coordinate permu- 
tational isomerization problem by a factor of 40320/384 = 105 in terms of the 
number of permutational isomers? In this connection the following comments 
pertain: 
(1) The wreath product group P4[P2] contains all of the symmetries of the eight 
coordinate polyhedra of interest. However, because of a special feature of the 
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square antiprism to be discussed in detail later, a direct p roduc t  g roup  P4[P2] x C2 
of order  ( 3 8 4 ) ( 2 ) = 7 6 8  is required  to contain sufficient symmetr ies  to allow 
interconvers ions  be tween  the Dzd dode c a he d ron  and the D4a square antiprism 
with the min imum vertex displacements.  This direct  p roduc t  g roup  may  be 
considered as a double group [26, 31, 43] analogous  to those which have various 
chemical  and physical applications. Interest ingly enough,  this double  g roup  
P4[P2] • C2 unlike P4[P2] is not a subgroup of P8 since 4 0 3 2 0 / 7 6 8  is not  an 
integer. 
(2) Most  significantly, the hyperoc tahedra l  restriction, as modified by double  
g roup  format ion ,  leads to topological  representa t ions  based on relatively simple 
graphs for convers ions be tween the eight vertex polyhedra .  
(3) The  hyperoc tahedra l  restriction appears  to r emove  spatially reasonable  
processes for  enan t iomer  in terconvers ion at least in the lowest energy  eight- 
coord ina te  polyhedra .  This is why J pairs of enant iomers  are considered ra ther  
than 2 J  individual isomers. This suggests that  fluxional processes [5] leading, for 
example,  to the in terconvers ion of D2d dodecahedra l  isomers and making  all eight 
vertices equivalent  on an n.m.r, t ime scale [44] will be of lower inherent  energy  
than racemizat ion of optically active eight coord ina te  complexes.  A l though  
extensive informat ion  is avilable on e ight -coord ina te  complexes  [41], experi-  
ments  designed to test this point  do not  yet  seem to have been  per formed.  

3. Properties of Eight-Coordinate Polyhedra 

Table  1 summarizes  the propert ies  of the four  e ight -coordina te  po lyhedra  of 
interest in this work.  These  po lyhedra  are depicted in Fig. 1 along with examples  
of hyperoc tahedra l ly  acceptable  labellings. The  lattice of subgroups  [40] of P8 

Table 1. Properties of the eight-coordinate polyhedra 

Point Isomer 
Vertices a Faces b group c counts a 

Polyhedron Edges ]3  ]4  f5  ]6 t q G IGI I J Cycle index (multiplied 
by IGI) 

Cube 

Hexagonal 
bipyramid 

Dodecahedron 

Square 
antiprism 

12 8 0 0 0 06  Oh 48 1680 8 x~+8x~x]+13x 4 
2 4 + 12x4 + 8x2x6 + 6x ax2 

8 ~ 2 ~ 2 3  18 0 6 0 2 12 0 D6h 24 3360 16 x l+zx lx6+lx lx2  
2 2  4 

+ 2X l X 3  + 4X 2 + 2X2X~ 
6 4 2  

+ 2 X 2 X  6 + x l x  2 + 3 x l x 2  

8 4 2 4 2 18 0 4 4 0 12 0 D2u 8 10080 48 xl+2xlxz+3x2+2x4 
8 2 3 4 2 16 0 8 0 0 8 2 Dad 16 5040 24 xl+4xlx2+5x2+2x4+ 

4x8 

a/ .  refers to the number of vertices of degree n (i.e. with n edges meeting at the vertex). 
b t refers to the number of triangular faces; q refers to the number of square or quadrilateral faces. 

G refers to the point group; IGI refers to the number of elements in the point group. 
d i = 8!/Inl where IRI is the size of the rotational subgroup of G (=IGI/2 in these cases); J = 384/]G I. 
See text. 
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relevant to this paper is given in Fig. 2, where the orders of each of the groups are 
given in parentheses. Solid arrows connect a group with its subgroups accessible 
through chains of normal subgroups [32]; if no such normal subgroup chain exists 
(e.g. Ps ~ P4[P2]), the arrow is dotted. The numbers above the arrows in Fig. 2 
correspond to the indices of the subgroups. 

A B C 

0 
D 

0 
E+ E -  

Fig. 1. Examples of eight-coordinate polyhedra considered in this paper with examples of hyperocta- 
hedral restrictions: (a) The hyperoctahedrally restricted cube 1-367-458-2 (or 367); (b) The 
hyperoctahedrally restricted hexagonal bipyramid 12-357468; (c) The 1-skeleton of the hyperocta- 
hedrally restricted D2d dodecahedron 15, 54, 48, 81, 23, 67 depicted as the underlying cube 
1-367-458-2 with the four added primary diagonals and the two added secondary diagonals; (d) A 
possible hyperoctahedrally restricted square antiprism but not one conforming to the rules developed 
in this paper as being useful for depicting permutational isomerizations; (e+ and e-) :  The two 
antipodally related hyperoctahedrally restricted square antiprisms 1357-8246 and 1357-6824 
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P8(40,320) 

I 
I 
1105 
I 

P4 [P21 (384) 

/ 
\ 

Oh(48) D6h(24) 

D2d (8) 

P4[P2] x C2(768 ) 

D4d(16) 

Fig. 2. Lattice of subgroups relevant to this paper between the fully symmetric group P8 and the D2d , 
D4a, and O6h point groups. Solid arrows connect a group with its subgroups reachable by a normal 
chain whereas a dotted arrow connects the simple P8 group with its largest subgroup considered here 
P4[P2]. The indices of the subgroups are indicated over the arrows 

The following summarizes the essential features of these polyhedra and their 
hyperoctahedrally acceptable labellings; 

1. Cube. A given vertex of a cube has three adjacent vertices, three vertices two 
edges away at opposite vertices of the face diagonals, and one vertex three edges 
away at the opposite vertex of the body diagonal. A hyperoctahedrally restricted 
labelling of a cube can be described as 1-blcldl-b2c2d2-2 (or more concisely as 
blclda) where blCld~ represents the three vertices adjacent to 1 and bl and b2, c l  

and c2, and dl and de are the three pairs of trans complements other than the 1, 2 
pair. Thus the labelling in Fig la  can be represented as 1-368-457-2 or more 
concisely as 368. The trans complements 1 and 2, 3 and 4, 5 and 6, and 7 and 8 are 
situated at the ends of the four body diagonals of the cube when its labelling is 
hyperoctahedrally restricted in the standard manner. 

2. Hexagonal bipyramid. A hyperoctahedrally restricted labelling of a hexagonal 
bipyramid can be described as alaz-blcldxbzc2d2 where: (a) ala2 represents the 
two apices; (b) b~cldlb2czd2 represents a path around the equatorial hexagon; (c) 
a~ and a2, b l  and b2, c l  and e2, and d~ and d2 represent the four pairs of trans 
complements. Thus the labelling in Fig. lb can be represented as 12-345678. The 
trans complement vertex pairs 1 and 2, 3 and 4, 5 and 6, and 7 and 8 are located at 
opposite apices and at the three pairs of opposite equatorial vertices ("para 
positions") of the hexagonal bipyramid when its labelling is hyperoctahedrally 
restricted in the standard manner. 
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3. D2d dodecahedron. The 1-skeleton of a D2d dodecahedron can be constructed 
from that of an underlying cube by adding six new edges. These new edges are face 
diagonals of the underlying cube as follows: 

(a) Four primary diagonals along a belt of four faces to form a cycle of length 
four along these four diagonals (e.g. 15, 54, 48, 81 in Fig. lc  along a belt 
containing the top, right, bottom, and left faces in that order). 
(b) Two secondary diagonals along the remaining two faces to form the 
characteristic interpenetrating tetrahedra of the D2d dodecahedron.  One of 
these tetrahedra has all vertices of degree five and the other tetrahedron has all 
vertices of degree four. 

Since D2d is a subgroup of Oh a D2d dodecahedron with 18 edges may be 
considered as a cube which is distorted so that the additional six face diagonal 
edges have approximately the same length as the twelve original cube edges. Six 
different D2d dodecahedra can be formed from a given cube depending on how 
the new face diagonal edges are added relating to the fact that D2d is a subgroup of 
index six in Oh. These dodecahedra can be designated by listing first the four 
primary diagonals and then the two secondary diagonals. Thus the D2d dodeca- 
hedron in Fig. lc  is formed from the cube in Fig. la  and can be designated as 15, 
54, 48, 81, 23, 67. 

4. Square antiprism. A hyperoctahedrally restricted square antiprism in principle 
could be constructed by locating the four trans complement vertex pairs at the 
ends of the four diagonals of the two square faces (e.g. D in Fig. 1). However,  such 
a hyperoctahedrally restricted square antiprism cannot be converted to the 
hyperoctahedrally restricted versions of the other eight vertex polyhedra con- 
structed as above through reasonable processes for polyhedral rearrangements. 
Therefore,  this procedure for generating hyperoctahedrally restricted square 
antiprisms is of little value in studying rearrangements in eight coordinate 
polyhedra. 

In order to avoid this difficulty a completely different procedure is used to 
construct a different type of hyperoctahedrally restricted square antiprism which 
can occur in hyperoctahedrally restricted polyhedral rearrangements involving 
square antiprisms. This procedure uses a 45 ~ twist of opposite faces of a hyperoc- 
tahedrally restricted cube defined as outlined above. Since a cube has three 
disjoint opposite pairs of square faces and since the 45 ~ twist can be applied in 
either of two directions, six different square antiprisms can be generated from a 
given underlying cube. Thus in Fig. 1 the square antiprisms E +  and E -  can be 
generated from cube A by twisting the 1357 and 2468 faces 45 ~ relative to each 
other but in opposite directions. An alternative method of considering hyperoc- 
tahedrally restricted square antiprisms of this type is to require that the trans 
complement vertex pairs 1 and 2, 3 and 4, 5 and 6, and 7 and 8 are each situated at 
a given vertex and a corresponding antipodal vertex. In this connection two 
vertices of a square antiprism are defined as an antipodal pair of vertices if they are 
on opposite square faces and are not connected by a single edge. Since a given 
vertex of a square antiprism has two such antipodal vertices, the number of 
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hyperoctahedrally restricted square antiprismatic enantiomeric pairs generated in 
this manner is 2J rather than J. This process of generating hyperoctahedrally 
restricted square antiprisms is analogous to using the P4[P2] • C2 direct product 
group of degree (384)(2) = 768 rather than the Pa[P2] group as the spanning group 
for rearrangements involving square antiprisms. The new C2 factor of this direct 
product group relates to whether the opposite faces of the underlying cube are 
twisted clockwise or counterclockwise in forming the corresponding square 
antiprism. Since IPsI/IPa[e2][ = a 0 5  is  an odd number, the direct product or double 
group Pz[P2] x C~ cannot be a subgroup of P8 by Lagrange's theorem [31, 32]. 

The numberings of these hyperoctahedrally restricted square antiprisms cor- 
respond to lblcldl-d22b2c2 or lblcld~-ced22b2 depending upon the direction of 
twist of the opposite pair of square faces of the underlying cube. Again bl and b2, 
Cx and cz, and dl and d2 correspond to the three pairs of trans complements other 
than the 1, 2 pair. 

The relationships between the various hyperoctahedrally restricted eight-vertex 
polyhedra and their standard labellings are given in Tables 2 and 3. Table 2 gives 
the standard labellings as defined above representing the 8 cube and the 16 
hexagonal bipyramid hyperoctahedrally restricted enantiomeric pairs. Table 3 
lists the standard labellings of the hyperoctahedrally restricted enantiomeric pairs 
of the 48 D2a dodecahedra and the 48 D4d square antiprisms generated from the 8 
cube enantiomeric pairs. Note that in this system of labelling of eight vertex 
polyhedra the partitioning of the vertex labels uniquely defines the polyhedron: a 
cube has a 1, 3, 3, 1 (or 3) partition of labels, a hexagonal bipyramid has a 2, 6 
partition of labels, a D2d dodecahedron has a 2, 2, 2, 2, 2, 2 partition of labels, and 
a square antiprism has a 4, 4 partition of labels. 

The following additional features of the four eight-coordinate polyhedra are of 
chemical interest and relevant to the treatment in this paper: 
(1) The D2a dodecahedron and the square antiprism have much lower interligand 
repulsion energies than the cube and hexagonal bipyramid [41]. 

Table 2. Hyperoctahedrally acceptable labellings of the cube and hexagonal 
bipyramid a 

A. Cube 

1-357--468-2 1-457-368-2 1-367-458-2 1-467-358-2 

1-358-467-2 1-458-367-2 1-368-457-2 1-468-357-2 

B. Hexagonal bipyramid 

12-357468 34-157268 56-317428 78-351462 

12-367458 34-167258 56-327418 78-361452 

12-358467 34-158267 56-318427 78-352461 

12-368457 34-168257 56-328417 78-362451 

a Each of these labellings represents a pair of enantiomers. See text. 
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(2) In an ML8 complex the D2d dodecahedron and the square antiprism can be 
formed by sp3d 4 hybridization of the central atom M whereas formation of the 
cube and hexagonal bipyramid must involve the f orbitals as well as the s, p, and d 
orbitals of M [42]. For these reasons the D2a-dodecahedron and the square 
antiprism are much more favorable coordination polyhedra than the cube and 
hexagonal bipyramid. Therefore polyhedral isomerization processes involving 
only Dza dodecahedra and square antiprisms are of lower energy and therefore 
more favored than suchprocesses also involving the cube and/or hexagonal 
bipyramid. 

4. Hyperoctahedrally Allowed Interconversion of Eight Coordinate 
Polyhedra 

The following three types of interconversions of eight coordinate polyhedra are 
possible under hyperoctahedral restrictions as defined above: 

A. Interconversion between the cube (Oh) and the hexagonal prism (D6h) (the 
Oh--D6h--Oh process in Fig. 3a). In this process a trans complement vertex pair of 
the cube (i.e. a pair along a body diagonal such as vertices 1 and 2 in Fig. 3a) is 
selected to be the pivot vertices. The remaining six vertices of the cube become 
coplanar in the hexagonal bipyramidal intermediate. Further movement of these 
vertices in the same direction leads ultimately to a new cube in which the three 
vertices adjacent to one pivot vertex in the original cube become adjacent to the 
other pivot vertex in the new cube and vice versa. The permutation cycle structure 
(analogous to a cycle index term in a permutation group [36-39]) of this process is 

2 3 x lx2 where the factor x~ refers to the two "fixed" pivot vertices. This permutation 
is an odd process (i.e. the sum of exponents in the xzn cycle structure factors is odd, 
namely 3). Furthermore, a single Oh--D6h--Oh process changes an odd number (1 
or 3) of vertices adjacent to a pivot vertex. Therefore a cube with the same 
adjacency relationships as the original cube can only be reached after an even 
number of Oh--D6h--Oh processes. For this reason the topological representation 
of the Oh--D6h--Oh process can only have cycles of even length and thus must be a 
bipartite graph [28]. Since a given cube has four trans complement pairs as 
possible pivots for the Oh--D6h--Oh process, the connectivity (6 in Muetterties' 
notation [6]) of the cube in this process is 4. Since a given hexagonal bipyramid can 
go to two hyperoctahedrally allowed cubes by the Oh--D6h--O h process, the 
connectivity of the hexagonal bipyramid is 2. Since the products .16 for both the 
cube and the hexagonal bipyramid for this process are (4) (8) = (2) (16) = 32, this 
process is stereochemically closed [6]. 

B. Interconversion between the cube (Oh) and the square antiprism (D4d)  (the 
O4d--Oh--D4d process in Fig. 3b). This process involves a torsion around the 
four-fold axis of the square antiprism in the direction necessary to form the 
corresponding hyperoctahedraUy restricted cube. Continuation of this torsion in 
the same direction gives the square antiprism with the four pairs of trans 
complements at the second antipodes (i.e. the antipodally related square 
antiprism). This process thus corresponds to the C2 factor in the Pa[P2] • C2 
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Fig. 3. The three processes for interconversions of eight-coordinate polyhedra discussed in this paper: 
(a) Top :  Oh-D6h--O h process interconverting the cube and the hexagonal bipyramid; (b) Middle: The 
D4a-Oh-D4a process interconverting the square antiprism and the cube; (c) Bottom: The D4a-D2a- 
Daa process interconverting the square antiprism and the D2,~ dodecahedron. The labellings and 
symmetries of each polyhedron are indicated below the polyhedron 

double group. Since for a given square antiprism, only one direction of twist 
satisfies the hyperoctahedral restriction, the connectivity of the square antiprism 
is 1. However, the intermediate cube has three different pairs of opposite faces. 
Each pair of opposite faces can be twisted either clockwise or counterclockwise to 
form pairs of antipodalty related square antiprisms. Thus the connectivity of the 
cube in the D4d--Oh-D4d process is the product of 3 (the number of disjoint pairs 
of opposite faces in the cube) and 2 (corresponding to the two antipodally related 
square antiprisms) or 6. The products .18 are (8) (6) = 48 for the cube and (24) 
(1)=24 for the square antiprisrn. However, the Y8 product for the square 
antiprism must be doubled to 48 to allow for the two antipodally related square 
antiprisms. Therefore the D4a-Oh-D4cl process is stereochemically closed. The 

4 2 �9 cycle structure for the D4a-Oh-D4a process is x lx2 since the four vertices of one 
square face of the square antiprism are fixed (the x~ factor) and the four vertices of 
the other square face oscillate past those of the stationary square face with a 
period of two in successive applications of the hyperoctahedraIly restricted D4a- 
Oh---D4d process (the x22 factor). This process is therefore an even permutation. 
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Since all improper symmetry operations of the square antiprism are odd permu- 
tations, the D4d-Oh-D4d process cannot interconvert enantiomeric square 
antiprisms. 

C. Interconversion between the D2d dodecahedron and the square antiprism (D4d) 
(the D4d-Dzd-D4d process in Fig. 3c). This process is best viewed as a diamond- 
square-diamond motion [45] involving edges of the D2d dodecahedron which 
arise from primary diagonals of opposite faces of the underlying ct~be. This 
process leads to the following results: 
(1) The four vertices of degree 4 (1458 in Fig. 3c) and the four vertices of degree 5 
(2367 in Fig. 3c) are interchanged in the D4d-Dza-D4d process. 
(2) Two primary diagonals become the two secondary diagonals and the two 
secondary diagonals become primary diagonals in the D4d-Ozd-D4d process. 
(3) The belt of faces in the underlying cube containing the principal diagonal 
edges of the Dzd dodecahedron rotates 90 ~ around the C3 axis of the cube each 
time the O4d-Ozd-D4d process occurs. This period 3 belt rotation can, for 
example, be represented by the opposite faces bearing the secondary diagonals of 
the underlying cube fixed in space rotating in the following sequence: "back- 
front" to "left-right" to "top-bottom" and then back to "back-front". 
(4) The permutation cycle structure of the D4d-D2d-D4a process is XzX6 similar to 
an $3 improper rotation [31] on a collection of eight points having appropriate 
symmetry. 
(5) The D4d-Oza-D4d process on a given D2d dodecahedron must be applied six 
times before the original Dzd dodecahedron is reached again. 
(6) The square faces of a given square antiprism can form two different Dzd 
dodecahedra depending upon which diagonals are added. The connectivity 6 of 
the square antiprism for the O4d-Ozd-O4d process is therefore 2. Similarly, there 
are two possible pairs of primary diagonals of a given Dzd dodecahedron which 
can be removed to give two different square antiprisms. Thus the connectivity 6 of 
the Dzd dodecahedron is also 2. The products J6 are therefore (24)(2) = 48 for the 
square antiprism and (48)(2) = 96 for the D2a dodecahedron. However, as in the 
case of the O4d-Oh--D4d process, the J6 product for the square antiprism must be 
doubled to 96 to allow for the pairs of antipodally related hyperoctahedrally 
restricted square antiprisms. Thus the D4a-D2d-Dad process is stereochemically 
closed. 
(7) The X2X 6 cycle structure of the D4a-D2a-D4d process involves six trans- 
positions [46], one for the x2 factor and five for the x6 factor. Furthermore, only an 
even number of successive D4d-D2d-D4d processes can give a D2d dodecahedron 
in which each vertex has the same adjacency relationships as the original dodeca- 
hedron (see item 1 above). Thus successive O4d-Dzd-D4a processes to give a DZd 
dodecahedron with the same adjacency relationships as the original dodeca- 
hedron must necessarily involve an even number of even permutations, namely 4k 
(k is an integer) transpositions [46]. In the cycle index of the D2d dodecahedron 
(Table 1) the terms containing 4k transpositions (xaS+3x 4) correspond to the 
proper symmetry operations E+Cz+2C~ and the terms containing 4 k + 2  

4 2 transpositions (2xlxz+2x]) correspond to the improper symmetry operations 
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2era +2S4. Since successive applications of the O4d-Ozd-D4a process can only 
effect permutations containing 4k transpositions on a given Dza dodecahedron, 
the D4a-Oza-O4a process cannot racemize such dodecahedra. 

The three processes Oh--D6h--Oh, O4a-Oh-O4d, and D4a-O2a-D4d represent three 
of the six possible pairs of the four eight-coordinate polyhedra (cube, hexagonal 
bipyramid, square antiprism, and D2d dodecahedron). The remaining three 
possible pairwise interconversions of eight coordinate polyhedra are forbidden at 
least under these hyperoctahedral restrictions for the following reasons: 

(a') Interconversion between the hexagonal bipyramid (18 edges) and the D2d 
dodecahedron (18 edges) (a D6h-D2d-D6h process) is forbidden because both 
polyhedra have the same number of edges. All of the allowed interconversions 
between eight vertex polyhedra (i.e. the Oh--D6h--Oh, D4d--Oh--D4d, and D4d- 
D2a-Dgd processes outlined above) when applied repeatedly can be de- 
composed into processes involving alternating additions and subtractions 
of edges. The number of edges added or subtracted in each stage can be 
designated as 2xe. Thus for the Oh--D6h--Oh, D4d--Oh--D4d, and D4a-D2d-D4d 
processes the Ae values are 18 - 12 = 6, 16 - 12 = 4, and 18 - 16 = 2, respec- 
tively. 
(b') Interconversion between the hexagonal bipyramid (18 edges) and the 
square antiprism (16 edges) (a D6h-D4d-D6h process) is forbidden since 
removal of even one of the necessary two edges from the hexagonal bipyramid 
to effect this process must give a vertex of degree 3. Therefore, the removal of 
edges from a hexagonal bipyramid cannot generate a square antiprism where 
all vertices have degree 4 even though a square antiprism has fewer edges than 
a hexagonal bipyramid. 
(c') Interconversion between the D2d dodecahedron (18 edges) and the cube 
(12 edges) (an Oh--D2d--Oh process) involves pairwise removal of six edges 
from the dodecahedron corresponding to the four primary and two secondary 
diagonals. For symmetry reasons, this pairwise removal of six edges should 
involve opposite faces of the cube. However, removal of the first pair of edges 
from the D2d-dodecahedron towards forming a cube gives a square antiprism 
assuming that the more abundant primary diagonals connecting vertices of 
higher degree are removed in the first step. Therefore, the Oh--D2d--Oh process 
can be decomposed into successive D4d-Oh-D4d and D4ct-D2cl-D4cl processes. 

The relationship between the four eight coordinate polyhedra and the three 
allowed interconversion processes can be depicted by the following chain: 

A B C 
D6h ~ ~ Oh '( ~ D4d ': ~ Dzd.  

Ae =6 Ae=4 ~xe =2 

For convenience, the letters above the arrows refer to the Oh--D6h--Oh process 
(process A), the Dnct-Oh-D4cl process (process B), and the Dnd-D2cl-D4d process 
(process C) as they are discussed above. The following observations can be made 
concerning this chain: 
(1) The sequence of the polyhedra in this chain is not monotonic relative to their 
number of symmetry elements. 
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(2) The lowest energy process must be C, the D4d-D2d-D4d process, since it is the 
only process in which both of the polyhedra involved can be formed only by s, p, 
and d orbitals of a central atom M in an ML8 complex. 

5. Topological Representations of Interconversions of Eight Vertex 
Polyhedra 

A given hyperoctahedral  graph H4 leads to 120 enantiomeric pairs of the four 
eight vertex polyhedra considered in this paper. These include 8 pairs of cubes, 16 
pairs of hexagonal bipyramids, 48 pairs of D2d dodecahedra,  and 48 pairs of 
square antiprisms (again doubling J in this case to allow for the two antipodally 
related square antiprisms). Polyhedra with connectivity two (e.g. the hexagonal 
bipyramid in the Oh--D6h--O h process and the D2d dodecahedron in the Dad-D2d- 
Dad process) which are also the end members of the interconversion chain given 
above can conveniently correspond to edges on the topological representations. 
(Strictly speaking, such connectivity two polyhedra correspond to the midpoints of 
such edges since in topological representations vertices (points) represent poly- 
hedra and edges represent processes.) 

These considerations lead to a topological representation of interconversions 
between hyperoctahedrally restricted eight vertex polyhedra enantiomeric pairs 
as a bipartite K4,4 graph of hexagons as depicted in Fig. 4. The following features 
on this topological representation are of interest: 
(1) The eight hexagons functioning as vertices in the K4,4 graph correspond to the 
eight hyperoctahedrally restricted enantiomeric pairs of the cube. 
(2) The 16 edges on the K4,4 graph correspond to the eight hyperoctahedrally 
restricted enantiomeric pairs of the hexagonal bipyramid and thus represent 
Oh--D6h--O h processes (Process A). 

467 :558 

Fig. 4. The topological representation of the 
hyperoctahedrally restricted permutational 
isomerizations involving the eight-coordinate 
polyhedra discussed in this paper. The hexagons 
represent the eight cube hyperoctahedrally 
restricted enantiomeric pairs as indicated by the 
labels below each hexagon; the edges connecting 
the hexagons represent Oh--D6h--O h processes 
and the hexagonal bipyramidal intermediates; 
the vertices of the hexagons represent the square 
antiprisms; and the edges of the hexagons 
represent Dnd-D2a-D4a processes and the D2d 
dodecahedra intermediates 
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(3) The K4,4 graph is bipartite in accord with the fact the original cube can be 
reached only after an even number of Oh--D6h--Oh processes. 
(4) The six vertices on each of the eight hexagons correspond to the six square 
antiprism enantiomeric pairs that can be generated from a given hyperocta- 
hedrally restricted enantiomeric pair of cubes through D4d-Oh-D4d processes. 
Antipodally related square antiprisms are located opposite each other in a given 
hexagon (i.e. three edges apart in "para" positions). 

| 6 

5 8 

8 3 C 4 2 

c/) C\c 4 | B - -  

-r I I ~ 4 
2 ~ 3 6 

6 / 2 ~  3 B 4 6 2 

2 

5 | 

4 | 

| 6 

5 | 

4 09 

Fig. 5. Details of the hexagon in the topological representation corresponding to the 457 (1-457-368- 
2) cube. The spokes B represent Dad-Oh-D4d processes and the edges C represent Dad-D2a-D4d 
processes as in Fig. 4. The D2d dodecahedral intermediate involved in each of the six D4a-D2a-D4a 
processes is depicted above the corresponding edge 
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(5) The six edges on each of the eight hexagons correspond to the six hyperocta- 
hedrally restricted enantiomeric pairs of the D2d dodecahedra that can be 
generated from the underlying cube corresponding to the hexagon in question. 
(6) Details of the hexagon corresponding to the 457 cube are depicted in Fig. 5. If 
this hexagon is considered as a wheel, the spokes on the wheel correspond to 
D,l.d--Oh--l~4d processes (Process B). 
(7) Paths along the circumference of a given hexagon correspond to D4d-D2d- 
D4d processes (Process C). This is the lowest energy eight-coordinate polyhedral 
interconversion. In terms of the topological representation depicted in Fig. 4 it is 
easiest to travel along the circumference of a given hexagon, much more difficult 
to jump to the center of the hexagon, and most difficult to travel along the edges of 
the K4.4 bipartite graph to an adjacent hexagon. 

6. The Group Structure of the Hyperoctahedrally Restricted Euantiomeric 
Pairs for the Various Eight Vertex Polyhedra 

Klemperer [7] has discussed permutational isomers of polyhedra with n vertices in 
terms of their n !/IRI right cosets where IR] is the order of the proper rotational 
subgroup of the molecular point group and n ! corresponds to the order of the fully 
symmetric group Pn. Since Pn = An x (22 and An is a simple group [32] when n I> 5, 
the symmetric group Pn cannot be factored into a direct product of the type 
R • S x L or G x L where R is the pure rotation subgroup of the molecular point 
group, S -- C1 or C2 depending upon whether the full molecular point group has 
an improper rotation axis (including a reflection plane = $1), G = R x S is the full 
molecular point group, and L is a group containing n!/]RI ISI =n!/IGI = tStI 
elements corresponding to coset representatives [7] which are permutations 
giving another isomer where each different coset representative gives a different 
isomer. However, the P4[Pz] hyperoctahedral group, unlike the symmetric groups 
Pn (n ~ 5), is a soluble group [32] with 7 C2 factor groups and one C3 factor group 
((27)(3) = 384). Furthermore, each of the eight-coordinate polyhedra considered 
in this paper have reflection planes and other symmetry operations involving 
improper rotation axes (S~). Therefore for each of the eight-coordinate poly- 
hedra, the spanning hyperoctahedral group P4[P2] can be factored as follows: 

P4[P2]= R x C2 x L = G x L. (1) 

The factor group L represents a group permuting the J hyperoctahedrally 
restricted enantiomeric pairs, which may also be regarded as coset representatives 
according to Klemperer [7]. Therefore ILl = J  = 384/IG[. 

We now examine the structure of the factor group L (Eq. 1) for the four 
eight-coordinate polyhedra of interest in terms of their generators as discussed in 
detail by Coxeter and Moser [47]. In considering the structure of the group L the 
distinction between direct and semidirect products [48] used by Woodman [49] is 
not made since the use of generators a~d relations makes the distinction unneces- 
sary. 
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A. Cube. The group L is C2 x C2 x (72 of order 8 with three generators a, b, and c 
of period 2 satisfying the following relationships: 

a 2=b 2=c a= 1; ab =ha; ac =ca; bc =cb (2) 

If the cube 1 -357-468-2  is taken as the reference cube, the generator a can 
represent the permutation (34), the generator b the permutation (56), and 
generator c the permutation (78). Each of these three generators represents a 
permutation of the type x6x2 which is absent from the symmetry point group of the 
cube. 

B. Hexagonal bipyramid. The group L is C2 x D 4  of order 16 with three genera- 
tors a, b, and c of period 2 satisfying the following relationships: 

a 2 = b 2 = c 2 = (ac) 2 = (ab) a = ( b c )  4 = 1 .  (3) 

If the hexagonal bipyramid 12-345678 is taken as the reference hexagonal 
bipyramid, the generator a can represent the permutation (56), the generator b 
the permutation (13)(24), and the generator c the permutation (34)(56)(78). Then 
the products ab, ac, and bc become (13)(24)(56), (34)(78), and (1423)(56) of 
periods 2, 2 and 4, respectively. 

C. D2d dodecahedron. The group L is the product (C2 x C2 x C2) x C6 of order 48. 
The C2 x C2 x C2 factor is the same as the C2 x (72 x C2 group of the underlying 
cube defined in Eq. 2. The generator of period 6 for the C6 factor is the 
D4,~-D2a-D4d process. 

D. Square antiprism. The group L is the product (C2 x (?2 x C2) x C3 of order 24. 
Again the Czx  C2x Ca factor is the same as the C2x C2xC2 group of the 
underlying cube defined in Eq. 2. The additional C3 factor arises from permu- 
tations of the three different pairs of opposite faces of the underlying cube that can 
be twisted to form different square antiprisms. If both antipodally related square 
antiprisms are considered then L = (Cz x C2 x C2) x C3 X C 2 and ]LI = 48. The 
additional C2 factor in this case arises from interchanges between clockwise and 
counterclockwise 45 ~ twists of a given pair of opposite faces (the C3 factor) of a 
given underlying cube (the C2 x C2 x C2 factor). 

A curious feature of this treatment is the involvement of the following three 
non-isomorphic groups of order 48: 
(1) The product ((72 x C2 x C2) x C6 which is the L group for the D2a dodeca- 
hedron. 
(2) The product (Ca x C2 x (72)x C3 x 672 which is the L group for the square 
antiprism including the antipodally related pairs. 
(3) The product (?2 x (2'2 x C3 x C2 x C2 = Oh which is the point group of the cube. 

7. Conclusion 

The previous more general paper on the symmetries of coordination polyhedra 
[34] shows how the hyperoctahedral  wreath product  group Pg[P2] of order 384 
spans as well as the fully symmetric group P8 of order 8! = 40320 all of the 
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symmetries of all of the chemically important eight vertex polyhedra. This paper 
shows how the closely related doubled hyperoctahedral group Pa[P2] x C2 of 
order 768 spans reasonable processes for the interconversions of the various 
eight-coordinate polyhedra as well as the permutational isomerizations of indivi- 
dual eight coordinate polyhedra. Restriction of isomerizations in eight-coordinate 
polyhedra to those involving permutations in P4[P2] x C2 allows construction of 
topological representations [6, 7] which are simple enough to be readily visu- 
alized. Thus a hexagon represents interconversions through square antiprismatic 
intermediates between D2d dodecahedra derived from a given underlying cube. 
Furthermore, a K4,4 bipartite graph with these hexagons as its vertices represents 
interconversions between such underlying cubes through hexagonal bipyramidal 
intermediates. 

The hyperoctahedral wreath product group P4[P2] differs from the fully sym- 
metrical group P8 by being soluble [32]. Therefore the group P4[P2] can be 
represented as a product of cyclic factors. Thus hyperoctahedrally restricted 
permutation isomerizations have a group structure which is not generally found in 
unrestricted permutation isomerizations because P,  = An x (72 and An is simple 
[32] for n - 5. 

The reduction of permutational symmetry from P8 to P4[P2] decreases the 
number of permutations by a factor of 105. A consequence of this reduction in 
symmetry is a loss of low energy pathways for the interconversion of enantiomeric 
eight-coordinate D2d dodecahedra and square antiprisms. The existence of 
optically stable chiral but stereochemically non-rigid ML8 complexes is therefore 
predicted. Thus a general conclusion from this work is that stereochemical 
non-rigidity need not imply optical lability. 
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